

Photodissociation in astrochemistry -Leiden Observatory workshop

Photodissociation in dying stars

Xiaohu Li

Leiden Observatory, Leiden University Feb. 4, 2015

An AGB star

Asymptotic Giant Branch: the final evolutionary stage of stars in the range $0.8 < M < 8 M_{\odot}$ double shellburning core inert carbon 106 helium-burning shell planetary nebula double shellhydrogen-burning shell 105 burning red giant 104 helium burning red giant 103 (solar units) hydrogen-burning shell helium burning helium-burning star star core subgiant 10 nosity inert helium Sun U 0.1 hydrogen-burning shell 10-2 white dwarf subgiant/ red giant core 10-3 Only $\approx 1\%$ of the 10 red giants are AGB stars 10^{-5} 0 8 FG 30,000 6.000 3.000 10.000 surface temperature (Kelvin) Copyright @ Addison Wesley Hertzsprung–Russell diagram

The Sun will eventually become an O-rich AGB star!

Circumstellar molecules in AGB-CSEs

2-atoms:	AlCl	CP	NaCl	SiN
	AlF	CS	OH	SiO
	C_2	FH	PN	SiS
	CO	KCl	SiC	SO
	CN			
3-atoms:	AINC	HCN	KCN	SiC_2
	C_3	HCP	MgCN	SiCN
	C_2H	H_2O	MgNC	SiNC
	C_2S	H_2S	NaCN	SO_2
	CO_2	HNC		
4-atoms:	ℓ -C ₃ H	C_3S	H_2CO	PH ₃ ?
	C_3N	C_2H_2	H_2CS	SiC_3
	C_3O	HC_2N	$\rm NH_3$	
5-atoms:	C_5	$c-C_3H_2$	HC_3N	HNC ₃
	C_4H	CH_2CN	HC_2NC	SiH_4
	C_4Si	CH_4	H_2C_3	
6-atoms:	C_5H	C_2H_4	HC_4N	H_2C_4
	C_5N	$\rm CH_3 \rm CN$	Cardon and Party	
\geq 7-atoms:	C_6H	CH ₂ CHCN	HC_5N	HC ₉ N
	C_7H	CH ₃ CCH	HC_7N	H_2C_6
	C_8H			
Ions:	C_4H^-	C_6H^-	C_8H^-	
	CN-	C_3N^-	$C_5 N^-$	HCO+

> 75 molecular species detected in CSEs around AGB stars

A large fraction is unique to the circumstellar medium

≈50% have been detected in <u>only</u> IRC+10216

Some new species were first detected in +10216, FeCN, CN⁻, ... C-rich AGB star (C/O > 1)

A model of an AGB star (Li et al. 2014)

Outer CSE, photodissociation process drives the chemistry

N₂ and CO: high abundances, significantly shielded from photodissociation

IRC+10216 (CW Leo) -- Molecule factory!

- Nearest C-rich AGB star (~150 pc), with high mass-loss rate
- The brightest object in the sky at midinfrared wavelengths outside the solar system
- * "Molecule factory": > 80 species observed in its envelope, e.g., CO, C₃N⁻, C₅N⁻ NaCN etc. This is ~ 50% over the totally known species (~ 160). Even H₂O, was detected
- Among these, more than 30 are N-bearing species, Nitrogen Chemistry is a "hot" topic!
- Ongoing discoveries driven by sensitive telescopes (ALMA, PdBI, ...)

It has a complex structure!

Improvements in our model (Li et al., 2014, 2015)

Rate12 (McElroy et al. 2013)	VS	Our model
$2.0 imes 10^{-10}$ s ⁻¹ (van Dishoeck, 1988), $2.0 imes 10^{-10}$ s ⁻¹ (van Dishoeck, 1988).	1. Photodissociation rate a. CO b. N ₂	2.6 $ imes$ 10 ⁻¹⁰ s ⁻¹ (Visser et al., 2009) 1.7 $ imes$ 10 ⁻¹⁰ s ⁻¹ (Li et al., 2013).
Dust + Self-shielding (Morris & Jura (1983), did not consider H_2 shielding.	 Shielding functions a. CO 	Dust + Self-shielding + H ₂ Full shielding! (Visser et al., 2009)
Excluded.	b. N ₂	Dust + Self-shielding + H ₂ Full shielding (Li et al., 2013)
"Single-band" approximation	3. Method for Implementing of shielding functions.	We employed a new method, much more accurate!

The abundance distributions of N₂ and CO

Observations: weak CO emission detected up to R=300"!

spherically- symmetric (SS) vs. plane-parallel (PP) model SS model, considering photons from all directions

Other N-bearing species

Major effects: (1) radii of peak abundances (2) total column densities

Radius of peak abundances

Observations vs. Simulations: differences are within a factor of two ALMA, PdBI ... may verify other new predictions (> 46 species) O-rich AGB star (C/O < 1)

A model of an O-rich AGB star: IK Tau (Li et al. 2015)

Results

We studied all C-, N-, O-, Si-, S-, P-, CI-, and Fbearing species

We found 36 high-abundant species which are possible to be detected in the near future

Results (one example)

Something interesting to do:

Seek observational evidences for our new discoveries!

Our hope is ALMA!

Observe N₂H⁺ (daughter) to infer N₂ (parent) abundance

Conclusions

- > Photodissociation of N_2 is fully understood, accurate rate and shielding functions are available (Li et al. 2013)
- > Large effect on $N_2 \rightarrow N$ transition radius and nitrogen chemistry.
- Newly studied: AGB chemistry (both C- and O- rich) (Li et al. 2014, 2015)
- Found observable sensitivities of chemical products to parent species, e.g.,N₂H⁺
- N₂ and CO shielding functions are available at http://home.strw.leidenuniv.nl/~ewine/photo/

Acknowledgements

..... (Leiden + Garching +)

Ewine F. van Dishoeck (Leiden Observatory + MPE)

Catherine Walsh (Leiden Observatory)

Markus Schmalzl (Leiden Observatory)

> Dutch Astrochemistry Network (DAN)

Alexander Tielens (Leiden Observatory) Ruud Visser (University of Michigan

Alan N. Heays (Leiden Observatory)

Wim Ubachs (VU University)

Brenton (The Aus

Brenton R. Lewis (The Australian National University)

Stephen T. Gibson (The Australian National University)

Acknowledgements

...... (Leiden + Garching +)

Marc van Hemert (Leiden Institute of Chemistry)

Keli Han

(Dalian Institute of Chemical Physics, Chinese Academy of Sciences)

Carina Arasa (Leiden Institute of Chemistry)

Isabelle Cherchneff (University of Basel)

Leen Decin (Universiteit Leuven)

Thanks for your attention!